일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- trustworthiness
- 트랜스포머
- gpt2
- nlp
- MLOps
- fairness
- 인공지능
- Bert
- 지피티
- 딥러닝
- XAI
- 챗GPT
- GPT-3
- GPT
- 챗지피티
- ML
- DevOps
- 자연어
- Tokenization
- word2vec
- 신뢰성
- AI Fairness
- Ai
- 인공지능 신뢰성
- 머신러닝
- 케라스
- ChatGPT
- Transformer
- 설명가능성
- cnn
Archives
- Today
- Total
목록주성분분석 (1)
research notes
PCA (Principal Component Analysis)
1. 차원의 저주 차원이 커질수록 데이터 포인트들간 거리가 크게 늘어나고 데이터가 희소화(Sparse)됨 수백~수천개 이상의 피처로 구성된 데이터 포인트들간의 거리에 기반한 ML 알고리즘이 무력화 됨 또한 피처가 많을 경우에 개별 피처간에 상관관계가 높아 선형회귀와 같은 모델에서는 다중 공선성 문제로 모델의 예측 성능이 저하될 가능성이 높음 다중공선성 문제: 독립변수간의 상관관계가 매우 높아 하나의 독립변수의 변화가 다른 독립변수에 영향을 미쳐 결과적으로 모델이 불안정하게 되는 것을 의미한다. 2. 차원축소의 장점 만약 수십~수백개의 피처들을 작은 수의 피처들로 축소한다면? 학습 데이터 크기를 줄여서 학습시간 절약 불필요한 피처들을 줄여서 모델 성능 향상에 기여 (주로 이미지 관련 데이터) 다차원의 데이..
머신러닝/ML basic
2022. 2. 19. 21:45