일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- ChatGPT
- AI Fairness
- Ai
- 지피티
- Bert
- XAI
- ML
- 딥러닝
- trustworthiness
- 인공지능
- 챗지피티
- GPT
- 머신러닝
- 인공지능 신뢰성
- gpt2
- 챗GPT
- MLOps
- GPT-3
- 설명가능성
- cnn
- Transformer
- nlp
- Tokenization
- 신뢰성
- 트랜스포머
- word2vec
- 자연어
- DevOps
- fairness
- 케라스
- Today
- Total
목록lime (2)
research notes
1. SHAP 개요 SHAP(SHapley Additive exPlanations)는 머신러닝 모델의 출력을 설명하기 위한 협력 게임 이론에 기반한 접근법이며 SHAP value를 통해 feature importance를 파악할 수 있다. ** A Unified Approach to Interpreting Model Predictions 논문 참조 ** 2. Additive Feature Attribution Method 선형회귀나 결정나무 같은 알고리즘은 그 자체로 출력 결과에 대한 설명이 가능하나, 앙상블 방식 혹은 딥러닝 등의 복잡한 모델의 경우는 블랙박스 특성상 설명하기가 매우 힘들다. 따라서, 복잡한 구조의 모델을 설명하기 위해서는 보다 단순한 모델을 활용하여 기존 모델을(original mod..
1. LIME 개요 LIME은 개별 예측을 설명하는 데 활용할 수 있는 시각화 기술 중 하나이며, Model-agnostic 하므로 특정 분류 또는 회귀 모델에 적용할 수 있다. 복잡한 모형을 해석이 가능한 심플한 모형(Surrogate Model*)으로 locally approximation을 수행하여 설명을 시도한다. 이름에서 알 수 있듯 전체 모델이 아닌 개별 prediction의 근방에서만 해석을 시도한다는 점과 어떠한 모델 (딥러닝, 랜덤 포레스트, SVM 등) 및 데이터 형식도(이미지, 텍스트, 수치형) 적용이 가능하다는 특징이 있다. 오늘날 신경망과 같이 복잡성이 높은 머신러닝 모델을 사용하는 일반적인 상황에서, 예측 결과에 대하여 전역적으로 완벽한 설명을 제시하는 것은 현실적으로 매우 어려..