일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 챗GPT
- word2vec
- nlp
- Tokenization
- 트랜스포머
- Ai
- XAI
- trustworthiness
- gpt2
- cnn
- 인공지능 신뢰성
- 딥러닝
- DevOps
- ChatGPT
- Transformer
- 자연어
- GPT
- 지피티
- 머신러닝
- ML
- 챗지피티
- AI Fairness
- fairness
- 설명가능성
- GPT-3
- 신뢰성
- 인공지능
- Bert
- MLOps
- 케라스
Archives
- Today
- Total
목록validation set (1)
research notes
Validation data set는 모델 학습에 사용이 되는가?
If you want to build a solid model you have to follow that specific protocol of splitting your data into three sets: One for training, one for validation and one for final evaluation, which is the test set. The idea is that you train on your training data and tune your model with the results of metrics (accuracy, loss etc) that you get from your validation set. Your model doesn't "see" your vali..
머신러닝/ML basic
2022. 2. 5. 23:12