일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 지피티
- MLOps
- 케라스
- gpt2
- ML
- Ai
- cnn
- AI Fairness
- 인공지능 신뢰성
- DevOps
- nlp
- 챗GPT
- GPT-3
- 설명가능성
- GPT
- 챗지피티
- Tokenization
- 트랜스포머
- word2vec
- 자연어
- XAI
- fairness
- Transformer
- 머신러닝
- 신뢰성
- 인공지능
- trustworthiness
- Bert
- 딥러닝
- ChatGPT
Archives
- Today
- Total
목록validation set (1)
research notes

If you want to build a solid model you have to follow that specific protocol of splitting your data into three sets: One for training, one for validation and one for final evaluation, which is the test set. The idea is that you train on your training data and tune your model with the results of metrics (accuracy, loss etc) that you get from your validation set. Your model doesn't "see" your vali..
머신러닝/ML basic
2022. 2. 5. 23:12