일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 챗GPT
- Tokenization
- ChatGPT
- 인공지능 신뢰성
- Bert
- GPT
- 자연어
- DevOps
- AI Fairness
- Ai
- XAI
- cnn
- gpt2
- 설명가능성
- fairness
- 인공지능
- 딥러닝
- 지피티
- 머신러닝
- word2vec
- ML
- 트랜스포머
- nlp
- GPT-3
- trustworthiness
- 신뢰성
- 케라스
- Transformer
- MLOps
- 챗지피티
- Today
- Total
목록자연어처리 (2)
research notes
GPT-1: Generative Pre-Training of a Language Model 1. 연구배경 보통 NLP 관련 데이터 셋은 Labeled 데이터 세트 보다 Unlabeled 형태의 데이터 셋이 훨씬 많다. 즉, 언어 모델을 학습하는데 필요한 데이터의 활용측면에 있어 레이블 된 데이터와 그렇지 않은 학습데이터 수의 차이가 상당하다. 따라서, Unlabeled 데이터 셋을 이용해 학습을 한 후 이를(Pre-trained model) 활용해 특정 태스크에 대한 학습을 수행하면(레이블 된 데이터를 활용해) 더 좋은 성능을 가진 모델을 만들 수 있을 것이다라는 가정을 가지고 본 연구가 수행되었다. 2. GPT: Unsupervised pre-training GPT는 기존 트랜스포머 구조에서 인코더를 ..
*** 딥 러닝을 이용한 자연어 처리 입문 (위키북스) 내용 요약 *** 1. RNN 기초 RNN(Recurrent Neural Network)은 입력과 출력을 시퀀스 단위로 처리하는 시퀀스(Sequence) 모델이다. RNN은 은닉층의 노드에서 활성화 함수를 통해 나온 결과값을 출력층 방향으로도 보내면서, 다시 은닉층 노드의 다음 계산의 입력으로 보내는 특징을 갖고있다. (이 때 xt, yt는 벡터이다.) 메모리 셀이 출력층 방향 또는 다음 시점인 t+1의 자신에게 보내는 값을 은닉 상태(hidden state) 라고 한다. 다시 말해 t 시점의 메모리 셀은 t-1 시점의 메모리 셀이 보낸 은닉 상태값을 t 시점의 은닉 상태 계산을 위한 입력값으로 사용한다. RNN은 입력과 출력의 길이를 다르게 설계 ..