일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- fairness
- 인공지능 신뢰성
- nlp
- 머신러닝
- Transformer
- gpt2
- 딥러닝
- 신뢰성
- 설명가능성
- Ai
- Bert
- 인공지능
- Tokenization
- GPT
- 지피티
- word2vec
- ChatGPT
- XAI
- AI Fairness
- cnn
- 트랜스포머
- 챗지피티
- GPT-3
- MLOps
- DevOps
- 챗GPT
- ML
- 케라스
- trustworthiness
- 자연어
Archives
- Today
- Total
목록training (1)
research notes
Validation data set는 모델 학습에 사용이 되는가?
If you want to build a solid model you have to follow that specific protocol of splitting your data into three sets: One for training, one for validation and one for final evaluation, which is the test set. The idea is that you train on your training data and tune your model with the results of metrics (accuracy, loss etc) that you get from your validation set. Your model doesn't "see" your vali..
머신러닝/ML basic
2022. 2. 5. 23:12